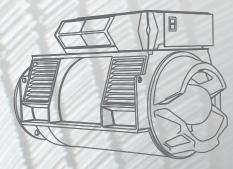


The Ultimate Range


STAMFORD

Utilising wire-wound technology and with an output extending from 4 to 5,000kVA, genuine STAMFORD alternators are designed for delivering superior efficiencies in marine, oil and gas auxiliary, UPS, telecoms, CHP, construction and other continuous or standby power applications. STAMFORD alternators are available with a choice of SAE adaptors to ensure easy coupling to a wide range of prime movers.

AvK[®]

600 - 10,000kVA

With a robust bar wound configuration, AvK alternators are robustly engineered products up to 10,000kVA, specifically designed to meet the challenges of the most arduous applications and environments - be it in extraction of oil and gas, coal and minerals, critical marine power to tankers and container vessels. Our extensive experience and knowledge gathered from a large number of diverse alternator installations worldwide provides expertise in offering integrated design solutions that helps our customers compete more successfully throughout the world.

Prime Movers

Designed to couple with: Diesel Engine, Gas Engine, Steam Turbine, Gas Turbine Diesel Engine compatibility: all brands and nodes

Common Features

Technology: Wire wound Protection: IP23 as standard Open ventilated construction

Designed For

Prime Power, Standby, Marine, Oil and Gas Auxiliary, Mining, Critical Protection and UPS, Combined Heat and Power, Telecoms, Mobile Construction

Prime Movers

Designed to couple with: Diesel Engine, Gas Engine, Steam Turbine, Gas Turbine Diesel Engine compatibility: all brands and nodes

Common Features

Technology: Bar wound Protection: IP23 as standard with higher IP ratings available as options Totally enclosed construction Highly configurable design

Designed For

Prime Power, Power Plants, Marine, Oil and Gas, Mining

MARKON

2 - 10kVA

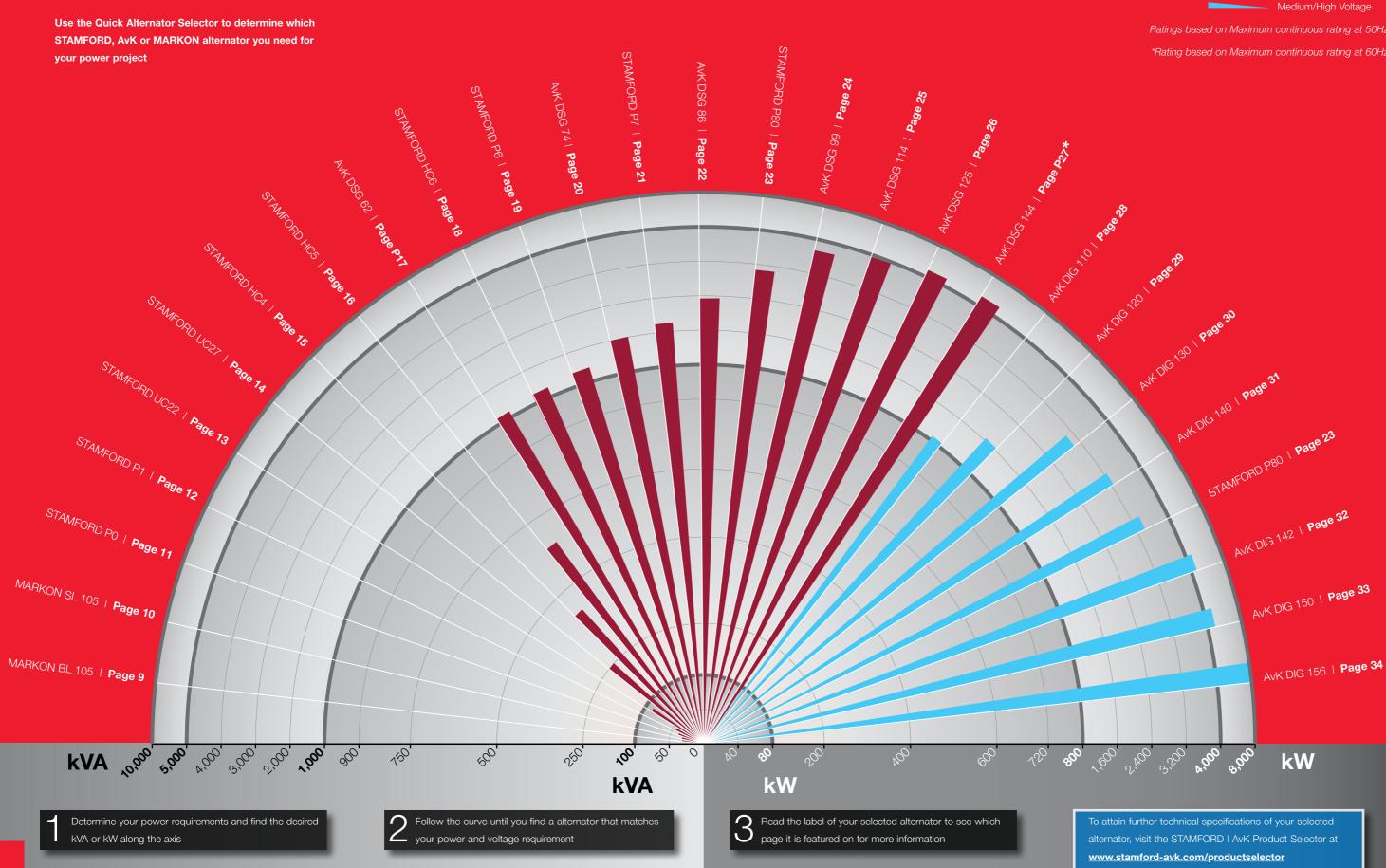
MARKON alternators are renowned for their versatility, whilst retaining robustness and reliability. The range extends from 2 to 10kVA in brushless, capacitor excited and slip ring, AVR controlled designs. A variety of adaptors are available to ease coupling with petrol or diesel engines. They are suitable for refrigeration vehicle power packs, private marine power supplies, police and fire service incident vehicles and other mobile power applications.

Prime Movers

Designed to couple with: Diesel Engine, Petrol Engine Engine compatibility: all brands

Common Features Technology: Wire wound

Designed For


Auxiliary Power Unit, Recreational Vehicles, Recreational Marine, Mobile Construction

1

Quick Alternator Selector

Low Voltage

Ratings based on Maximum continuous rating at 50Hz *Rating based on Maximum continuous rating at 60Hz

Customer Support Excellence. Every[™] Time.

Industry Leading Technical Support

It's what we do

From pre-sales application support all the way through to engineers servicing your STAMFORD, AvK and MARKON alternators, we're there for you. For over 100 years and counting, Cummins Generator Technologies prides itself on the proven support we've delivered for our customers, globally.

Selecting the right alternator for the right application

In today's complex world our goal is to make your life simpler - by using our unrivaled experience to provide solutions to your challenges. With a rich, proven history of helping our customers become efficient, we understand the performance requirements that each application and operating environment demands. Our knowledgeable, experienced applications engineers align individual customers' power needs with the most suitable alternator specification.

For applications engineering support contact applications@cummins.com

Global Customer Service

One Global Service Network

Our professional engineers are widely recognised in the industry as experts in electrical, electronic and mechanical engineering. They in turn are supported by a common worldwide spares and service network for all STAMFORD, AvK and MARKON alternators.

What that means to you

- 24 hour response to service emergencies, 7 days a week
- Trained engineers available locally, speaking the local language
- Commissioning of alternators onsite
- Onsite bearing maintenance and bearing condition monitoring
- Onsite insulation integrity checks
- AVR and accessories set up onsite
- Extensive aftermarket distribution for genuine STAMFORD, AvK and MARKON parts

Vibration Analysis

Alternators coupled to diesel and gas engines are exposed to engine induced vibrations. We use design tools to analyse the impact of linear and torsional vibrations and work with the engine or generator set builders to validate the design of the generator set, as well as to solve end-user vibration issues. This technology is key in enabling customers to improve the innovation and reliability of new and current product designs.

Product Training

optimum use of the alternator. Our Customer Service teams offer product training courses for engineers, operators and service and support staff. Each course is individually tailored to suit the needs of the customer, the generator set builder or the end-user. Product familiarisation courses, with a choice of training modules - including alternator control systems, applications, trouble-shooting, maintenance or other specific requirements - are also available.

For customer service contact service-engineers@cumminsgeneratortechnologies.com

Aftermarket Parts

For genuine Aftermarket Parts, visit: www.stamford-avk.com/genuineparts

Accessories

Current Sensing Kit

supplying loads at the end of long cable runs.

Separate Voltage Trimmer

Provides remote fine adjustment of the alternator output voltage.

Paralleling Kit

Quadrature Droop provides a drooping characteristic, when paralleling alternators, ensuring the load is shared in proportion to the alternator outputs.

RFI Suppressor Kit

Reduces the radiated RFI signal from the alternator to enable compliance with various high level EMC standards.

Excitation Loss Module

Detects loss of excitation, not easily detectable by other means, when alternators are running in parallel. This unit switches a single pole change over contact which can be incorporated into an external protection system.

Manual Voltage Regulator

Controls the alternator output voltage manually under emergency conditions. This must be in conjunction with the PMG type control system.

Frequency Detection Module

Senses frequency, and hence rotational speed, can be used to disengage the starter when engine fires, and to shut down the engine in event of overspeed.

Power Factor Controller

Assists the AVR to achieve accurate voltage regulation when Controls and maintains a required power factor condition whilst running in parallel with a mains supply. This unit also incorporates a voltage matching facility for use with basic automatic synchronising equipment.

Alternator Protection Module

Detects overload conditions by measuring voltage discrepancies in the alternator phase voltages. On fault detection, the unit switches a change over contact; this engine, or de-excite the alternator.

Diode Failure Detector

On detection of a failed rotating diode this module switches a change over contact. This could either trigger an alarm or automatically shut down the set.

Excitation Circuit Breaker

Circuit breaker which is tripped by a signal from the MX321 AVR overvoltage detection circuit.

Dual AVR System

Used for manual switching between two AVRs where the specification calls for the provision of a backup AVR.

Analogue

To control the output of a alternator, analogue AVRs allow users to manually control the output of alternators to meet their operating requirements. All analogue STAMFORD and AvK AVRs are encapsulated to provide protection against moisture, salt and sand in the atmosphere and mounted on anti-vibration mounts for mechanical protection from engine vibrations.

Digital

Digital AVRs offer a smart solution to control output of STAMFORD and AvK alternators, whether it is onsite or remotely. The ability to monitor real-time information means that digital AVRs can adjust the output of the alternator depending on the operating conditions, such as the temperature, as well as the application environment.

For ultimate control, operators can set pre-determined settings and user defined protection parameters. Furthermore, users can connect remotely to the AVR via a computer or portable device.

Digital AVRs also come with several accessories built in, such as a Power Factor Controller and Diode Failure Detector and they come as standard for all STAMFORD and AvK Grid Code Compatible alternators.

A Digital STAMFORD and AvK AVR, the DM110

The Right Technology

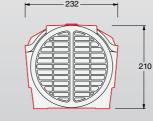
MARKON

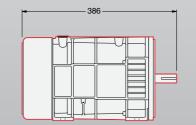
Optional Features Bearing Arrangement

BL105

Model	BL
Maximum continuous rating at 50Hz (kVA)	6.5
Maximum continuous rating at 60Hz (kVA)	7.5

Specifications	
Voltage Range	110-240
Poles	2
Technology	Wire Wound
Voltage sensing	1-Phase
Bearing Arrangement	Single
SAE Adaptors	J609
Terminals	4
Material Insulation Class	F
Excitation System	Self exciting, Brushless
Ingress Protection	IP23




All dimensions in millimetres (mm)

Designed For	
Marine Auxiliary	•
Oil & Gas Auxiliary	
Telecommunications	
Mobile Construction	•
Critical Protection & UPS	
Continuous Power & Standby	
Auxiliary Power Unit	

Double

Prime Movers	
Diesel Engine	•
Petrol Engine	•

Drawings represent standard design All dimensions in millimetres (mm)

232-	
	210

 386	•

Model	
Maximum	С

Specifi

Voltage Poles Technol AVR

Voltage Bearing

SAE Ad Termina

Material Excitatio Ingress

Mobile

Critical Continu Auxiliary

Prime

Diesel E Petrol Engine

SL105		MARKON)
Model		SL	
Maximum continuous rating at 50Hz	(kVA)	7	
Maximum continuous rating at 60Hz	(kVA)	9.3	

ications	
e Range	110-240
	2
ology	Wire Wound
	Analogue
e sensing	1-Phase
g Arrangement	Single
daptors	J609
als	4
al Insulation Class	F
ion System	Self exciting, Slipring
Protection	IP23

nal Features	
g Arrangement	Double
ned For	
Auxiliary	•
Bas Auxiliary	
mmunications	
Construction	•
Protection & UPS	
uous Power & Standby	
ry Power Unit	•
Movers	
Engine	•
Engine	•

0 - 50 kVA Low Voltage

STAMFORD[®]

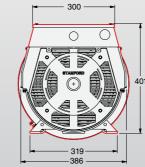
Model	P0
Maximum continuous rating at 50Hz (kVA)	20
Maximum continuous rating at 60Hz (kVA)	22

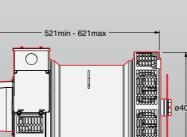
PO

Specifications Voltage Range 380-600 Poles 2, 4 Technology Wire Wound AVR Analogue 2-Phase Voltage sensing Bearing Arrangement Single SAE Adaptors 2, 3, 4, 5 Terminals 12 Material Insulation Class Н Excitation System Self exciting IP23 Ingress Protection Connection with other machines Paralleling capability

Optional Features	
Excitation System	EBS
Bearing Arrangement	Double
Output configurations	1 phase re-connectable
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters

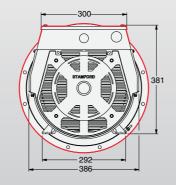
Designed For	
Marine Auxiliary	•
Oil & Gas Auxiliary	•
Telecommunications	•
Mobile Construction	•
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	•

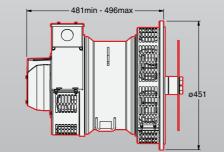

Prime Movers	
Diesel Engine	•
Gas Engine	



Model Maximum Maximum

Drawings represent standard design All dimensions in millimetres (mm)




00 —		-	
)	0	1	
		401	
		Í	

Prime Diesel E Gas Engine

Drawings represent standard design

All dimensions in millimetres (mm)

0 - 50 kVA

P1	S	TAMFORD	
		P1	
continuous rating at 50Hz	(kVA)	45	
continuous rating at 60Hz	(kVA)	55	

Specifications	
Voltage Range	380-600
Poles	2, 4
Technology	Wire Wound
AVR	Analogue
Voltage sensing	2-Phase
Bearing Arrangement	Single
SAE Adaptors	2, 3, 4
Terminals	12
Material Insulation Class	Н
Excitation System	Self exciting
Ingress Protection	IP23
Connection with other machines	Paralleling capability

Optional Features	
Excitation System	EBS
Bearing Arrangement	Double
Output configurations	1 phase re-connectable
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters

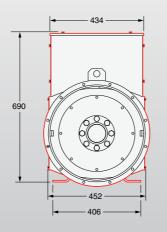
Designed For
Marine Auxiliary
Oil & Gas Auxiliary
Telecommunications
Mobile Construction
Combined Heat & Power
Critical Protection & UPS
Continuous Power & Standby
Prime Movers
Diesel Engine

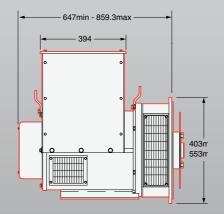
STAR	ИFO	RD	UC22

Model	UC22
Maximum continuous rating at 50Hz (kVA)	85
Maximum continuous rating at 60Hz (kVA)	103.8

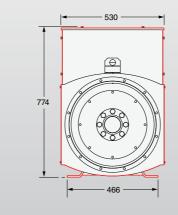
Specifications	
Voltage Range	380-690
Poles	4
Technology	Wire Wound
AVR	Analogue
Voltage sensing	2-Phase
Bearing Arrangement	Single
SAE Adaptors	1, 2, 3, 4
Terminals	12
Material Insulation Class	Н
Excitation System	Self exciting
Ingress Protection	IP23
Connection with other machines	Paralleling capability

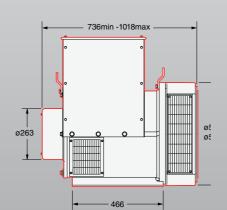
Optional Features	
Excitation System	PMG
Bearing Arrangement	Double
Ingress Protection	IP23 Air Filters
Output configurations	1 phase re-connectable
Voltage sensing	3-Phase sensing
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters


Designed For Grid Code Compatible	
Gild Code Compatible	-
Marine Auxiliary	•
Oil & Gas Auxiliary	•
Telecommunications	•
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	


Prime Movers	
Diesel Engine	•
Gas Engine	•

Drawings represent standard design


All dimensions in millimetres (mm)



STAMFORI

Drawings represent standard design All dimensions in millimetres (mm)

SAE Ada Terminals Material I Excitation Ingress F Connecti	
Material I Excitation Ingress F Connecti	SAE Ada
Excitation Ingress F Connecti	Terminals
Ingress F Connecti	Material I
Connecti	Excitation
	Ingress F
Optiona	Connecti
Optiona	-
	Optiona

Excitati Bearing Ingress Output

> Voltage Temper Environ

Grid Co Marine Oil & Ga Telecom Combin

Desigr

Critical Continu

Prime Diesel E Gas Eng

STAMFORD° **UC27**

UC27

250 312.5

Model	
Maximum continuous rating at 50Hz (kVA)	
Maximum continuous rating at 60Hz (kVA)	

Specifications	
Voltage Range	380-690
Poles	4
Technology	Wire Wound
AVR	Analogue
Voltage sensing	2-Phase
Bearing Arrangement	Single
SAE Adaptors	1, 2, 3
Terminals	12
Material Insulation Class	Н
Excitation System	Self exciting
Ingress Protection	IP23
Connection with other machines	Paralleling capability

-	
S.	
ĭ	
2	
S	
<u>-</u>	

Â

nal Features	
tion System	PMG
ng Arrangement	Double
s Protection	IP23 Air Filters
it configurations	1 phase re-connectable
le sensing	3-Phase sensing
erature monitoring	Thermistors
nmental protection	Anti-condensation Heaters

ned For	
ode Compatible	•
Auxiliary	•
as Auxiliary	•
nmunications	•
ned Heat & Power	•
Protection & UPS	•
uous Power & Standby	•
Mayora	

Movers	
Engine	•
ngine	•
-	

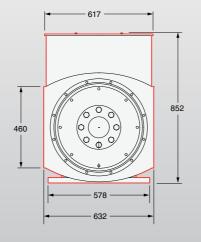
STA			B
	1111	1 2 4	

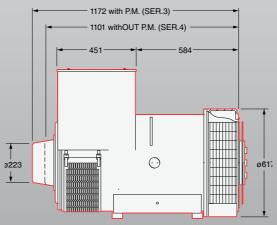
Model	HC4
Maximum continuous rating at 50Hz (kVA)	400
Maximum continuous rating at 60Hz (kVA)	500

HC4

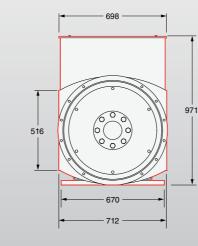
Specifications	
Voltage Range	380-690
Poles	4
Technology	Wire Wound
AVR	Analogue
Voltage sensing	2-Phase
Bearing Arrangement	Single
SAE Adaptors	0, 1, 2
Terminals	12
Material Insulation Class	Н
Excitation System	Self exciting
Ingress Protection	IP23
Connection with other machines	Paralleling capability

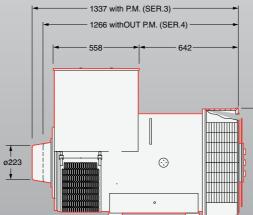
Ontional Factures	
Optional Features	
Excitation System	PMG
Bearing Arrangement	Double
Ingress Protection	IP23 Air Filters
Output configurations	1 phase re-connectable
Voltage sensing	3-Phase sensing
AVR	Digital
Temperature monitoring	Winding RTDs
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters


Designed For	
Grid Code Compatible	٠
Marine Auxiliary	۲
Oil & Gas Auxiliary	۲
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	•


Prime Movers	
Diesel Engine	•
Gas Engine	•

Drawings represent standard design


All dimensions in millimetres (mm)



STAMFORD

Drawings represent standard design All dimensions in millimetres (mm)

ø71

Prime Diesel E Gas Eng

STAMFORD[®] HC5

Model	HC5
Maximum continuous rating at 50Hz (kVA)	670
Maximum continuous rating at 60Hz (kVA)	825

Specifications			
Voltage Range	380-690		
Poles	4		
Technology	Wire Wound		
AVR	Analogue		
Voltage sensing	2-Phase		
Bearing Arrangement	Single		
SAE Adaptors	00, 0, 0.5, 1		
Terminals	12		
Material Insulation Class	Н		
Excitation System	Self exciting		
Ingress Protection	IP23		
Connection with other machines	Paralleling capability		

Optional Features			
Excitation System	PMG		
Bearing Arrangement	Double		
Ingress Protection	IP23 Air Filters		
Output configurations	3 phase re-connectable		
Voltage sensing	3-Phase sensing		
AVR	Digital		
Temperature monitoring	Winding RTDs		
Temperature monitoring	Thermistors		
Environmental protection	Anti-condensation Heaters		

ned For	
ode Compatible	•
Auxiliary	•
ias Auxiliary	•
ned Heat & Power	•
Protection & UPS	•
uous Power & Standby	•

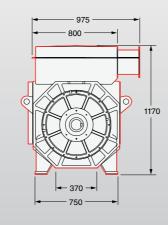
Movers	
Engine	•
ngine	•

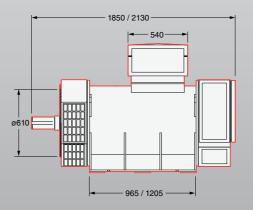
DSG 62

Model	DSG 62
Maximum continuous rating at 50Hz (kVA)	1,100
Maximum continuous rating at 60Hz (kVA)	1,320

Specifications			
Voltage Range	400-690		
Poles	4		
Technology	Bar Wound		
AVR	Digital		
Voltage sensing	3-Phase		
Bearing Arrangement	Double		
SAE Adaptors	1, 0, 00		
Terminals	6		
Material Insulation Class	Н		
Excitation System	Auxiliary Winding		
Ingress Protection	IP23		
Temperature monitoring	Winding RTDs		
Connection with other machines	Paralleling capability		

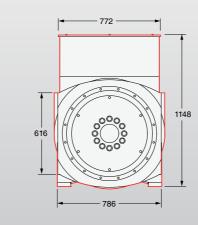
Optional Features	
Bearing Arrangement	Sleeve Bearings
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54/55 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters

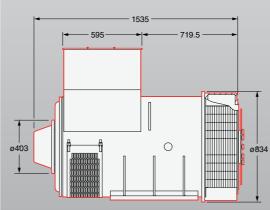

Designed For	
Grid Code Compatible	
Marine Auxiliary	•
Oil & Gas	•
Oil & Gas Auxiliary	•
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	•
Prime Movers	
Diesel Engine	•


•

Statute /			
Contraction of the			-7
100 March 1			100
Contraction of the local division of the loc			
		-	
2			
		C	
1.00			
No. of Concession, Name	1.00		AvK-
	1023		
	1.00		
1000			
and the second se		100	1
		and the second second	
	A state	and the second sec	

Drawings represent standard design


All dimensions in millimetres (mm)



FAMFOR

Drawings represent standard design All dimensions in millimetres (mm)

Materia
Excitati
Ingress
Connec
Option
Bearing
Ingress

Specifi

Design Grid Coc

Marine A Oil & Gas Oil & Gas Combine Critical P Continuo

Prime

Diesel E Gas Eng

Gas Engine

1100
HC6
1,135
1,438

Specifications	
Voltage Range	380-690
Poles	4, 6
Technology	Wire Wound
AVR	Analogue
Voltage sensing	3-Phase
Bearing Arrangement	Single
SAE Adaptors	00, 0, 0.5
Terminals	6
Material Insulation Class	Н
Excitation System	PMG
Ingress Protection	IP23
Connection with other machines	Paralleling capability

Optional Features	
Bearing Arrangement	Double
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44 Air Filters
Output configurations	3 phase re-connectable
AVR	Digital
Temperature monitoring	Winding RTDs
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters

ed For	
ode Compatible	•
Auxiliary	•
as	
as Auxiliary	•
ned Heat & Power	•
Protection & UPS	•
ious Power & Standby	•

Movers	
Engine	•
igine	•

250 - 1,250 kVA

19

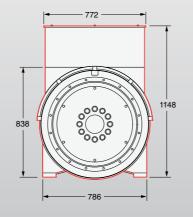
STAMFORD°

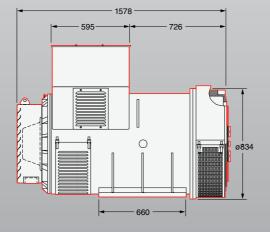
Model	P6
Maximum continuous rating at 50Hz (kVA)	1,250
Maximum continuous rating at 60Hz (kVA)	1,513

P6

Specifications	
Voltage Range	380-480
Poles	4
Technology	Wire Wound
AVR	Analogue
Voltage sensing	3-Phase
Bearing Arrangement	Single
SAE Adaptors	0, 00, 18, 21, 24
Terminals	12
Material Insulation Class	Н
Excitation System	PMG
Ingress Protection	IP23
Connection with other machines	Paralleling capability

Optional Features	
Bearing Arrangement	Double
Output configurations	4 phase re-connectable
Temperature monitoring	Winding RTDs
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters


Designed For	
Grid Code Compatible	
Marine Auxiliary	
Oil & Gas	
Oil & Gas Auxiliary	
Combined Heat & Power	
Critical Protection & UPS	
Continuous Power & Standby	•


Prime Movers	
Diesel Engine	•
Gas Engine	•

Drawings represent standard design

All dimensions in millimetres (mm)

Drawings represent standard design

All dimensions in millimetres (mm)

1150 -— 600 —

→ 450 →

- 880 -- 920 -

2020 / 2240 -

- 1105 / 1295 -

-430

-540-

1360

920

ø787

Model Maximun Maximun

Specifi Voltage

Optiona Bearing

Ingress Ingress

Cooling Environm

Design Power P

Grid Coc Marine A Oil & Gas Oil & Gas Combine Critical P Continuo

Prime I Diesel Ei

Gas Eng

DSG 74

	DSG 74	
im continuous rating at 50Hz (kVA)	2,000	
im continuous rating at 60Hz (kVA)	2,400	

Specifications	
Voltage Range	400-690
Poles	4, 6, 8
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	1, 0, 00
Terminals	6
Material Insulation Class	Н
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

al Features	
Arrangement	Sleeve Bearings
Protection	IP23 Air Filters
Protection	IP44/54/55 Totally enclosed
options	CACA/CACW
mental protection	Anti-condensation Heaters

ed For	
Plant	
ode Compatible	
Auxiliary	•
as	•
as Auxiliary	•
ned Heat & Power	•
Protection & UPS	•
ious Power & Standby	•

Movers	
Engine	•
igine	•

1,250 - 4,000 kVA

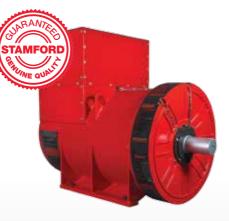
AvK°

STAMFORD°

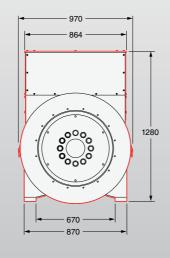
Model	P7
Maximum continuous rating at 50Hz (kVA)	2,200
Maximum continuous rating at 60Hz (kVA)	2,750

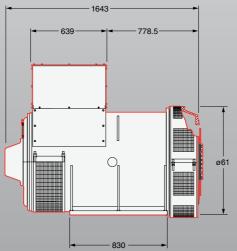
P7

Standard Features Voltage Range 380-690 Poles 4,6 Technology Wire Wound AVR Analogue 2-Phase Voltage sensing Bearing Arrangement Single SAE Adaptors 0, 00 Terminals 6 Н Material Insulation Class PMG Excitation System IP23 Ingress Protection Connection with other machines Paralleling capability

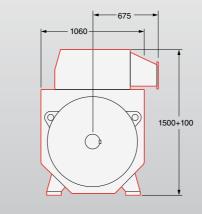

Bear
Ingre

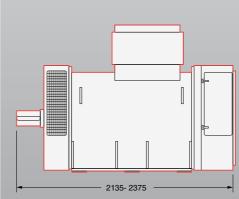
Optional Features	
Bearing Arrangement	Double
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44 Air Filters
Voltage sensing	3-Phase sensing
AVR	Digital
Temperature monitoring	Winding RTDs
Temperature monitoring	Thermistors
Environmental protection	Anti-condensation Heaters




Power Plant	•
Grid Code Compatible	•
Marine Propulsion	•
Marine Auxiliary	•
Oil & Gas	
Oil & Gas Auxiliary	•
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	•

Prime Movers	
Diesel Engine	•
Gas Engine	•
Gas Turbine	•
Steam Turbine	•


Drawings represent standard design All dimensions in millimetres (mm)



4

Drawings represent standard design All dimensions in millimetres (mm)

Specif Voltage Poles Technolo AVR

Voltage Bearing SAE Ada Terminal

Material Excitatio Ingress

Tempera Connect

Optiona Bearing

Ingress Ingress

Cooling Environr

Design

Power F Grid Co Marine Marine Oil & Ga Combin Critical Continu

Prime Diesel E Gas En Gas Tur Steam

AvK[®]

Model	DSG 86	
Maximum continuous rating at 50Hz (kVA)	2,990	
Maximum continuous rating at 60Hz (kVA)	3,408	

ications	
Range	400-690
	4, 6, 8, 10
logy	Bar Wound
	Digital
e sensing	3-Phase
g Arrangement	Double
daptors	1, 0, 00
als	6
al Insulation Class	Н
ion System	Auxiliary Winding
Protection	IP23
rature monitoring	Winding RTDs
ction with other machines	Paralleling capability

al Features	
g Arrangement	Sleeve Bearings
Protection	IP23 Air Filters
Protection	IP44/54/55 Totally enclosed
g options	CACA/CACW
mental protection	Anti-condensation Heaters

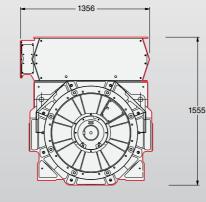
•
•
•
•
•
•
•

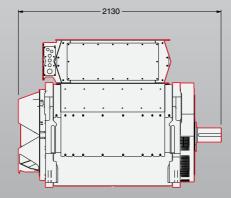
Movers	
Engine	•
ngine	•
urbine	
Turbine	

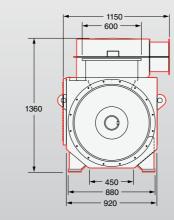

STAMFORD° **P80**

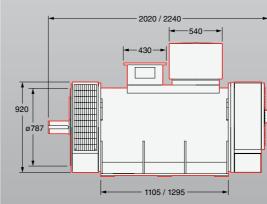
Model	P80 LV	P80 MV	P80 HV
Maximum continuous rating at 50Hz (kVA)	3,900	4,200	3,800
Maximum continuous rating at 60Hz (kVA)	4,400	5,100	4,700

Specifications			
Voltage Range	380-690	3,300-4,160	6,000-13,800
Poles	4		
Technology	Wire Wound	Bar Wound	Bar Wound
AVR	Digital		
Voltage sensing	3-Phase		
Bearing Arrangement	Double		
SAE Adaptors	0, 00		
Terminals	6		
Material Insulation Class	Н	Н	F
Excitation System	PMG		
Ingress Protection	IP23		
Temperature monitoring	Winding RTDs		
Connection with other machines	Paralleling capability		


-		
Ingress Protection	IP23	
Temperature monitoring	Winding RTDs	
Connection with other machines	Paralleling capability	
	-	
Optional Features		
Bearing Arrangement	Single	
Ingress Protection	IP23 Air Filters	
Temperature monitoring	Thermistors	
Environmental protection	Anti-condensation Heaters	
Designed For		
Power Plant	• • •	
Grid Code Compatible	• • •	
Marine Propulsion		
Marine Auxiliary		
Oil & Gas		
Combined Heat & Power	• • •	
Critical Protection & UPS	• • •	


Continuous Power & Standby ۲ • • **Prime Movers** Diesel Engine ullet۲ ulletGas Engine • • ۲ Gas Turbine ۲ ۲ ۲ ullet• Steam Turbine •


Drawings represent standard design


All dimensions in millimetres (mm)

Drawings represent standard design All dimensions in millimetres (mm)

Tempera Connec Option Bearing Ingress

Ingress

Cooling Environn

Design Power F

Prime

Diesel I Gas Er Gas Tur Steam

Model	DSG 99
Maximum continuous rating at 50Hz (kVA)	4,700
Maximum continuous rating at 60Hz (kVA)	5,300

Specifications			
Voltage Range	400-690		
Poles	4, 6, 8, 10		
Technology	Bar Wound		
AVR	Digital		
Voltage sensing	3-Phase		
Bearing Arrangement	Double		
SAE Adaptors	0, 00		
Terminals	6		
Material Insulation Class	Н		
Excitation System	Auxiliary Winding		
Ingress Protection	IP23		
Temperature monitoring	Winding RTDs		
Connection with other machines	Paralleling capability		

al Features	
g Arrangement	Sleeve Bearings
Protection	IP23 Air Filters
Protection	IP44/54/55 Totally enclosed
g options	CACA/CACW
mental protection	Anti-condensation Heaters

Designed For	
Power Plant	
Grid Code Compatible	•
Marine Propulsion	•
Marine Auxiliary	
Oil & Gas	
Combined Heat & Power	
Critical Protection & UPS	•
Continuous Power & Standby	

Movers	
Engine	•
ngine	•
urbine	
Turbine	

AvK°

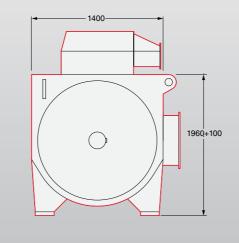
SG 99

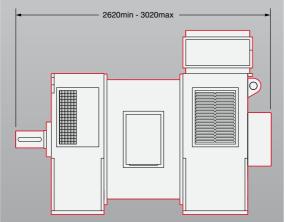
DSG 114

Model	DSG 114
Maximum continuous rating at 50Hz (kVA)	5,000
Maximum continuous rating at 60Hz (kVA)	5,940

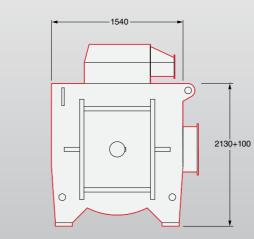
Specifications	
Voltage Range	400-690
Poles	6, 8, 10
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	Н
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

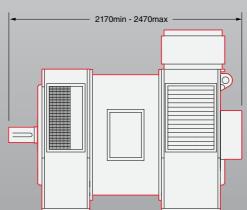
Optional Features	
Bearing Arrangement	Sleeve Bearings
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54/55 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters


	Heaters
Designed For	
Power Plant	
Grid Code Compatible	
Marine Propulsion	•
Marine Auxiliary	•
Oil & Gas	•
Combined Heat & Power	•
Critical Protection & UPS	•
Continuous Power & Standby	•
	I


Prime Movers	
Diesel Engine	•
Gas Engine	•
Gas Turbine	
Steam Turbine	

Drawings represent standard design


All dimensions in millimetres (mm)



Drawings represent standard design All dimensions in millimetres (mm)

Specif Voltage Poles Technol AVR

Option

Desig

Power Grid Co Marine Marine

Oil & Ga Combin Critical

Continu Prime

Diesel Gas En

Gas Tu Steam

25

DSG 125

Model	DSG 125
Maximum continuous rating at 50Hz (kVA)	7,000
Maximum continuous rating at 60Hz (kVA)	8,500

Specifications	
Voltage Range	690
Poles	8, 10
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double (Sleeve Bearings)
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	Н
Excitation System	Auxiliary Winding
Ingress Protection	IP44
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

Optional Features	
Ingress Protection	IP54/55 Totally enclosed
Cooling options	CACW
Environmental protection	Anti-condensation Heaters

ned For	
Plant	
ode Compatible	
Propulsion	•
Auxiliary	•
as	•
ned Heat & Power	
Protection & UPS	
uous Power & Standby	•

Movers	
Engine	•
ngine	•
urbine	
1 Turbine	

9	
_	
141	

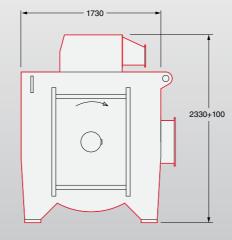
AvK°

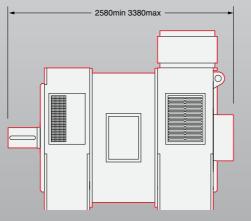
DSG 144

Model	DSG 144
Maximum continuous rating at 60Hz (kVA)	6,600

Specifications	
Voltage Range	690
Poles	10
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double (Sleeve Bearings)
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	Н
Excitation System	Auxiliary Winding
Ingress Protection	IP44
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

Optional Features	
Ingress Protection	IP54/55 Totally enclosed
Cooling options	CACW
Environmental protection	Anti-condensation Heaters


Designed For	
Power Plant	
Grid Code Compatible	
Marine Propulsion	•
Marine Auxiliary	•
Oil & Gas	٠
Combined Heat & Power	
Critical Protection & UPS	
Continuous Power & Standby	•
Drime Movers	


Prime Movers	
Diesel Engine	•
Gas Engine	•
Gas Turbine	
Steam Turbine	

Drawings represent standard design

All dimensions in millimetres (mm)

Drawings represent standard design

All dimensions in millimetres (mm)

0

- 2470 -

A.

1555 -

Model Maximu Maximu

Specifi

Connec Option Bearing

1400

Ingress Ingress

Cooling Environr

Design Power

Grid Co Marine F Oil & Ga Combin Continu

Prime

Diesel E Gas Eng Gas Tur Steam

4,000 - 7,000 kVA

DIG 110

	Ά.		
	<u>^ \</u>		
-		<u> </u>	

DIG 110	
1,080	
1,300	
	1,080

Specifications	
Voltage Range	3,300-11,000
Poles	4
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	1, 0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

nal Features	
g Arrangement	Sleeve Bearings
s Protection	IP23 Air Filters
s Protection	IP44/54/55 Totally enclosed
g options	CACA/CACW
nmental protection	Anti-condensation Heaters

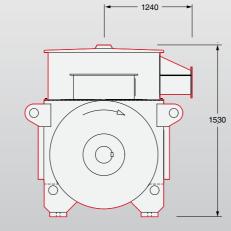
ned For	
Plant	•
ode Compatible	•
Propulsion	
as	•
ned Heat & Power	•
uous Power & Standby	•
Movers	
Engine	•
ngine	•
urbine	•
Turbine	

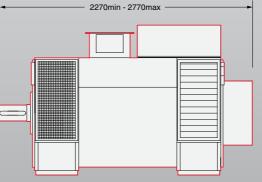
High Voltage 1,000 - 6,000 kVA

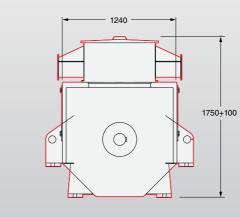
DIG 120

Model	DIG 120
Maximum continuous rating at 50Hz (kVA)	2,050
Maximum continuous rating at 60Hz (kVA)	2,600

Specifications	
Voltage Range	3,300-11,000
Poles	4
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	1, 0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability


Optional Features	
Bearing Arrangement	Sleeve Bearings
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54/55 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters


Designed For
Power Plant
Grid Code Compatible
Marine Propulsion
Oil & Gas
Combined Heat & Power
Continuous Power & Standby
Prime Movers
Diesel Engine
Gas Engine
Gas Turbine
Steam Turbine


Drawings represent standard design

All dimensions in millimetres (mm)

Drawings represent standard design All dimensions in millimetres (mm)

AVIN
Voltage
Bearing
SAE Ad
Termina
Material
Excitatio
Ingress

Connec Option Bearing

Ingress Ingress

Cooling Environ

Desigr

Power Grid Co Marine Oil & Ga Combin Continu

Prime Diesel Gas Eng

Gas Tur Steam Turbine

High Voltage 1,000 - 6,000 kVA

AvK[®]

Model	DIG 130	
Maximum continuous rating at 50Hz (kVA)	3,850	
Maximum continuous rating at 60Hz (kVA)	4,000	

Specifications	
Voltage Range	3,300-13,800
Poles	4, 6
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	1, 0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

nal Features		
g Arrangement	Sleeve Bearings	
s Protection IP23 Air Filter		
s Protection	IP44/54/55 Totally enclosed	
g options	CACA/CACW	
nmental protection	Anti-condensation Heaters	

ned For	
Plant	
code Compatible	
e Propulsion	
Gas	
ined Heat & Power	
uous Power & Standby	
Movers	
Engine	
ngine	
urbine	

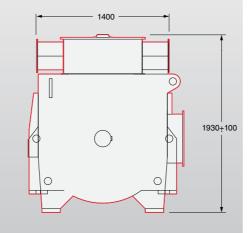
•

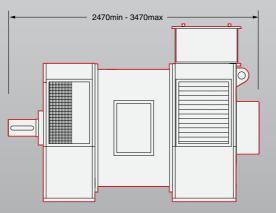
High Voltage 1,000 - 6,000 kVA

AvK°

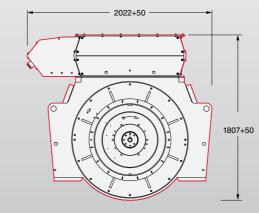
DIG 140

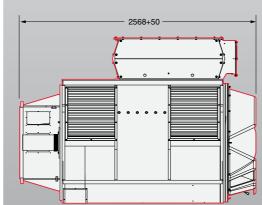
Model	DIG 140
Maximum continuous rating at 50Hz (kVA)	4,600
Maximum continuous rating at 60Hz (kVA)	5,300


Specifications	
Voltage Range	3,300-13,800
Poles	4, 6
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability


Optional Features	
Bearing Arrangement	Sleeve Bearings
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters

Designed For
Power Plant
Grid Code Compatible
Marine Propulsion
Oil & Gas
Combined Heat & Power
Continuous Power & Standby
Prime Movers
Diesel Engine
Gas Engine
Gas Turbine
Steam Turbine


Drawings represent standard design All dimensions in millimetres (mm)



8 5 4

Drawings represent standard design All dimensions in millimetres (mm)

High Voltage 1,000 - 6,000 kVA

DIG 142

A	Ι	V	Ľ	

Model	DIG 142	
Maximum continuous rating at 50Hz (kVA)	5,800	
Maximum continuous rating at 60Hz (kVA)	6,700	

Specifications	
Voltage Range	3,300-13,800
Poles	4
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

nal Features	
s Protection	IP23 Air Filters
nmental protection	Anti-condensation Heaters

ned For	
Plant	•
Code Compatible	•
e Propulsion	
Gas	•
ined Heat & Power	•
nuous Power & Standby	•

Movers	
Engine	•
ngine	•
urbine	•
1 Turbine	•

High Voltage 1,000 - 6,000 kVA

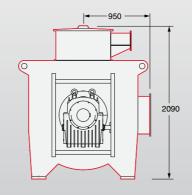
|--|

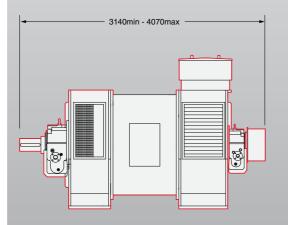
IG 15	0
-------	---

Model	DIG 150
Maximum continuous rating at 50Hz (kVA)	7,400
Maximum continuous rating at 60Hz (kVA)	8,500

Specifications	
Voltage Range	3,300-13,800
Poles	4, 6, 8
Technology	Bar Wound
AVR	Digital
Voltage sensing	3-Phase
Bearing Arrangement	Double
SAE Adaptors	0, 00
Terminals	6
Material Insulation Class	F
Excitation System	Auxiliary Winding
Ingress Protection	IP23
Temperature monitoring	Winding RTDs
Connection with other machines	Paralleling capability

Optional Features	
Bearing Arrangement	Sleeve Bearings
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters


Designed For	
Power Plant	•
Grid Code Compatible	•
Marine Propulsion	•
Oil & Gas	•
Combined Heat & Power	•
Continuous Power & Standby	•


Prime Movers	
Diesel Engine	•
Gas Engine	•
Gas Turbine	•
Steam Turbine	•

Drawings represent standard design

All dimensions in millimetres (mm)

AvK

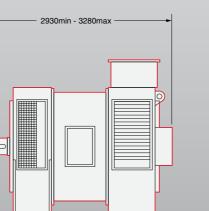
Drawings represent standard design

All dimensions in millimetres (mm)

- 1730 -

 \bigcirc

Voltage Poles Techno AVR Voltage


> Tempe Connec

Option Ingress Ingress

Desig Power Grid Co Marine Oil & G

Combir Contin Prime Diesel

Gas Er Gas Tu Steam

2300

6,000 - 20,000 kVA

High Voltage

AvK[®]

	DIG 156	
um continuous rating at 50Hz (kVA)	10,800	
um continuous rating at 60Hz (kVA)	11,200	

Specifications			
Voltage Range	3,300-13,800		
Poles	4, 6, 8, 10		
Technology	Bar Wound		
AVR	Digital		
Voltage sensing	3-Phase		
Bearing Arrangement	Double (Sleeve Bearings)		
Terminals	6		
Material Insulation Class	F		
Excitation System	Auxiliary Winding		
Ingress Protection	IP23		
Temperature monitoring	Winding RTDs		
Connection with other machines	Paralleling capability		

Optional Features	
Ingress Protection	IP23 Air Filters
Ingress Protection	IP44/54 Totally enclosed
Cooling options	CACA/CACW
Environmental protection	Anti-condensation Heaters

ned For	
r Plant	
Code Compatible	•
e Propulsion	•
Gas	•
pined Heat & Power	•
nuous Power & Standby	•
e Movers	
l Engine	•

i Engine	•
Engine	•
Turbine	•
n Turbine	•

Delivering the Right Technology to our customers globally for over 100 years

One Global Standard

Although our products are used in a variety of applications, the common factor is that Cummins Generator Technologies work to a single standard for both products and services no matter where you are in the world.

We work to One Global Standard, so each of our manufacturing plants build products to the same exacting quality that has come to distinguish our alternators in the industry.

All of our plants utilise the same sophisticated manufacturing technologies, advanced systems, common practices and rigorous testing techniques to ensure your **STAMFORD**, **AvK** and **MARKON** alternators are built to last.

Our Promise

At Cummins Generator Technologies, it's not just the products we make that set us apart - it's how we engage our customers every day. The unique combination of knowledge, dependability and innovation we bring to each customer relationship turns everyday service into excellent customer support. As a result we help our customers operate with greater efficiency, making it possible for them to compete more successfully throughout the world.

Cummins Generator Technologies manufactures the world's broadest range of alternators from 2 to 10,000 kVA.

There for you™

Committed to Quality

STAMFORD | AvK Alternators

youtube.com/stamfordavk

For Applications Support: applications@cummins.com

For Customer Service: service-engineers@cumminsgeneratortechnologies.com

For general enquiries: info@cumminsgeneratortechnologies.com

Copyright 2015, Cummins Generator Technologies Ltd. All rights reserved. Cummins and the Cummins logo are registered trade marks of Cummins Inc. STAMFORD, AvK and MARKON are registered trade marks of Cummins Generator Technologies Ltd.

